Nearest-Neighbor Based Non-Parametric Probabilistic Forecasting with Applications in Photovoltaic Systems

نویسندگان

  • Jorge Ángel González Ordiano
  • Wolfgang Doneit
  • Simon Waczowicz
  • Lutz Gröll
  • Ralf Mikut
  • Veit Hagenmeyer
چکیده

Time series forecasting (i.e. the prediction of unknown future time series values using known data) has found several applications in a number of fields, like, economics and electricity forecasting [15]. Most of the used forecasting models deliver a so-called point forecast [4], a value that according to the models’ criteria is most likely to occur. Nonetheless, such forecasts lack information regarding their uncertainty. A possibility of quantifying such uncertainty is by conducting probabilistic forecasts [6, 10], which can be delivered as prediction intervals (including the probability of the forecast being inside the interval) or complete conditional probability distributions of future time series values [12]. Such a quantification of the forecast uncertainty is of interest for several optimization problems, as e.g. model predictive control. Probabilistic forecasting is divided in parametric and non-parametric approaches. While the former assume that the forecast values follow a known distribution (e.g. Gaussian) and try to determine the parameters describing it, the latter make no assumptions, but instead attempt to approximate the underlying distribution via the training data. Non-parametric approaches have the advantage of not assuming that all values will follow the same probability distribution across all points in time [3, 21].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Infrared Target Tracking Using Naïve-Bayes-Nearest-Neighbor

Robust yet efficient techniques for detecting and tracking targets in infrared (IR) images are a significant component of automatic target recognition (ATR) systems. In our previous works, we have proposed infrared target detection and tracking systems based on sparse representation method. The proposed infrared target detection and tracking algorithms are based on sparse representation and Bay...

متن کامل

Bias Reduction and Metric Learning for Nearest-Neighbor Estimation of Kullback-Leibler Divergence

Asymptotically unbiased nearest-neighbor estimators for KL divergence have recently been proposed and demonstrated in a number of applications. With small sample sizes, however, these nonparametric methods typically suffer from high estimation bias due to the non-local statistics of empirical nearest-neighbor information. In this paper, we show that this non-local bias can be mitigated by chang...

متن کامل

Non-zero probability of nearest neighbor searching

Nearest Neighbor (NN) searching is a challenging problem in data management and has been widely studied in data mining, pattern recognition and computational geometry. The goal of NN searching is efficiently reporting the nearest data to a given object as a query. In most of the studies both the data and query are assumed to be precise, however, due to the real applications of NN searching, suc...

متن کامل

A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting

Electric load forecasting plays an important role in electricity markets and power systems. Because electric load time series are complicated and nonlinear, it is very difficult to achieve a satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EWKM), which combines k-Nearest Neighbor (KNN) and Ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.06463  شماره 

صفحات  -

تاریخ انتشار 2017